
Exploring Bounds and Lexicodes

Tyler Friedman

April 27, 2015

1 Introduction

An interesting problem in coding theory is how to determine the maximum
number of codewords in a code with certain parameters. For an n-dimensional
code, we are interested in the maximum number of codewords such that the code
has minimum distance d. Formally, we use the notation Aq(n, d) and Bq(n, d)
to define the maximum of number of codewords in a code over Fq of length n
and minimum distance d for an arbitrary (linear on non-linear) code and linear
code, respectively.

For arbitrary n and d, it is difficult to find Aq(n, d) and Bq(n, d) exactly.
In lecture, we have considered upper bounds—Sphere Packing, Singleton, and
Greismer—as well as lower bounds—Gilbert and Varshamov—on these values.
The purpose of this paper is to take a survey of other well-known bounds in
the literature that we have not discussed. In the first part of this paper, we
will consider the Plotkin and Elias Upper bounds. In the second part, we will
consider the asymptotic versions of the Singleton and Plotkin bounds. In the
third part, we will consider lexicodes, an interesting subset of linear codes that
meet the Gilbert Bound.

For reference, this paper covers material from Sections 2.2, 2.5, 2.10, and
2.11 of [1].

2 Upper Bounds

2.1 Plotkin Upper Bound

The Plotkin Bound is an upper bound that often improves upon the Sphere
Packing Bound on Aq(n, d).

Theorem 2.1 (Plotkin). Let C be an (n,M, d) code over Fq such that rn < d
where r = 1− q−1. Then

Aq(n, d) ≤
⌊

d

d− rn

⌋
(1)

1

Before proving this bound, it is important to note that it is only valid when
d is sufficiently close to n. For large q, this is can be a considerable limiting
factor. Consider that our restriction is n < 2d for q = 2, n < 3

2d for q = 3,
n < 4

3d for for q = 4, etc.

Proof. Let

S =
∑
x∈C

∑
y∈C

d(x, y) (2)

Note that for x, y ∈ C, d(x, y) = 0 for x = y, and d ≤ d(x, y) for x 6= y. This
implies that

M(M − 1)d ≤ S (3)

This comes directly from equation 2. We have M possible codewords to
consider for x in the outer summation, M − 1 distinct codewords from x to
consider in the inner summation for y, and the distance between x and y will
always be greater than or equal to the minimum distance d.

Next, let M be the M × n matrix whose rows are the codewords of C. For
1 ≤ i ≤ n, let ni,α be the number of times α ∈ Fq occurs in column i of M.
Note that

∑
α∈Fq

ni,α = M for 1 ≤ i ≤ n. This is simply because there are M
total elements of Fq in each column, so the sum over all ni,α must necessarily
be M .

I claim that we can rewrite S as a double sum over these ni,α values. Specif-
ically,

S =

n∑
i=1

∑
α∈Fq

ni,α(M − ni,α). (4)

Note that ni,α(M − ni,α) is multiplying the number of times α occurs in
column i by the number of times it doesn’t occur in column i. In other words,
we’re counting the number of times two elements of the same column are not
equivalent, exactly the condition that constitutes the Hamming distance. By
summing over all α and then all columns, we arrive at the same value generated
by 2.

Next, simplify:

n∑
i=1

∑
α∈Fq

ni,α(M − ni,α) = M

n∑
i=1

∑
α∈Fq

ni,α −
n∑
i=1

∑
α∈Fq

n2i,α

= nM2 −
n∑
i=1

∑
α∈Fq

n2i,α

(5)

Recall the Cauchy-Schwarz inequality, which states that (
∑n
i=1 xiyi)

2 ≤(∑n
i=1 x

2
i

) (∑n
i=1 y

2
i

)
. For our purposes, this means that

(∑
α∈Fq

1 · ni,α
)2
≤

q
(∑

α∈Fq
n2i,α

)
.

2

Using this inequality, we obtain

S ≤ nM2 −
n∑
i=1

q−1

∑
α∈Fq

1 · ni,α

2

= nM2 − nM2

q
= nrM2. (6)

Combining 3 and 6, we get M(M − 1)d ≤ nrM2, which simplifies to

M ≤
⌊

d

d− rn

⌋
. (7)

It is interesting to see exactly how the Sphere Packing and Plotkin bounds
compare for specific values of n and d. For the following examples we will assume
q = 2. Also, recall from class that if d is even, A2(n, d) = A2(n− 1, d− 1).

Example 2.2. (n, d) = (7, 4).

Applying the Sphere Packing bound, we have A2(7, 4) = A2(6, 3) ≤ 26

1+6 ,
giving us A2(7, 4) ≤ 9.

Applying the Plotkin bound, we have A2(7, 4) ≤ 4
4− 1

2 ·7
= 8.

Example 2.3. (n, d) = (9, 6).

Applying Sphere Packing, we have A2(9, 6) = A2(8, 5) ≤ 28

1+8+28 , giving us
A2(n, d) ≤ 6.

Applying the Plotkin bound, we have A2(9, 6) ≤ 6
6− 1

2 ·9
= 4.

Using MATLAB, I sought to visualize how the Plotkin and Sphere Packing
bounds compare. To do so, I plotted their values over 8 ≤ n ≤ 25, with d > rn.
Below is the case of q = 2; I found similar but more smoothed out results for
higher values of q (see submission folder).

Figure 1: Plotkin and Sphere Packing bounds for n, d ∈ [8, 25]

3

Figure 2: Two different perspectives of the same graph, the Plotkin Bound
visualized for q=2, n, d ∈ [6, 40]

I also thought it would be interesting to visualize how the Plotkin bound
and Sphere Packing bounds operate as a function of n and d. Given various
values of n and d, I plotted the resulting bound, using a triangular mesh plot to
approximate the discrete 3D data. (See Sphere Packing visualizations on next
page).

2.2 Elias Upper Bound

Another upper bound on Aq(n, d) is due to Elias in 1960. The Elias bound is
generally weaker than other bounds we have discussed, but is important because
of the asymptotic form that it generates.

In order to prove the Elias bound, two lemmas are necessary.

Lemma 2.4. Let C be an (n,K, d) code over Fq such that all codewords have
weights at most w, where w ≤ rn with r = 1− q−1. Then

d ≤ Kw

K − 1

(
2− w

rn

)
. (8)

The proof of this lemma uses a very similar technique to that used in our
proof of the Plotkin bound. Just as before, given an (n,K, d) code C, the proof
considers the K × n matrix M whose rows are the codewords of C. Using
this matrix, the proof takes the expression K(K − 1)d and shows through a
number of equation manipulations that it is less than or equal the expression
K2w

(
2− w

rn

)
. Two key tools for the proof are the Cauchy-Schwarz inequality,

and the relationship between the sum of the distances between all pairwise
codewords and the sums of the ni,α values in the columns of M.

4

Figure 3: Two different perspectives of the same graph, the Sphere Packing
Bound visualized for q=2, n, d ∈ [6, 40]

As an aside: the second lemma, stated below, uses the notation Vq(n, a) to
denote the number of vectors in a sphere of radius a in Fnq . This is a concept
that we became very familiar with this semester in our discussions of the Sphere
Packing and Gilbert bounds.

Lemma 2.5. Suppose C is an (n,M,d) code over Fq. Then there is an (n,M, d)
code C′ over Fq with an (n,K,d) subcode A containing only codewords of weight
at most w such that K ≥MVq(n,w)/qn.

The proof of this lemma begins by considering the intersection between a
sphere of radius w centered at 0, and the special vector x ∈ Fnq added to C
such that the intersection is maximal. The important step is noticing that this
value is greater than or equal to the sum over all vectors y ∈ Fnq of that same
sphere of radius w, intersected with y + C, all divided by qn. The proof then
uses sum manipulations to find a relationship between our original expression
and 1

qnVq(n,w)M .

Theorem 2.6. Let r = 1−q−1. Suppose that w ≤ rn and w2−2rnw+rnd > 0.
Then

Aq(n, d) ≤ rnd

w2 − 2rnw + rnd
· qn

Vq(n,w)
. (9)

The proof of this theorem, though omitted, follows almost directly from the
previous two lemmas.

We can work through a few examples to see how the Elias bound operates.

Example 2.7. n = 14, d = 6, q = 2. Recall from before that A2(n, d) =
A2(n− 1, d− 1) if d is even. We will again use this fact to find the best possible
bound that this theorem can provide.

5

For w = 0, we get A2(13, 5) ≤ .5·13·5
.5·13·5 ·

213

Vq(13,0)
= 213 = 8192; similarly,

A2(14, 6) = 214 = 16384.

For w = 1, we get A2(13, 5) ≤ .5·13·5
1−2·.5·13+.5·13·5 ·

213

Vq(13,1)
= 32.5

1−13+32.5 ·
213

1+13 =

927; similarly A2(14, 6) ≤ .5·14·6
1−2·.5·14+.5·14·6 ·

214

Vq(14,1)
= 42

1−14+42 ·
214

1+14 = 1581.

For w = 2, we get A2(13, 5) ≤ .5·13·5
4−2·2·.5·13+.5·13·5 ·

213

Vq(13,2)
= 32.5

4−26+32.5 ·
213

1+13+78 = 275; similarly A2(14, 6) ≤ .5·14·6
4−2·2·.5·14+.5·14·6 ·

214

Vq(14,2)
= 42

4−28+42 ·
214

1+14+91 = 360.

For w = 3, we get A2(13, 5) ≤ .5·13·5
9−2·3·.5·13+.5·13·5 ·

213

Vq(13,3)
= 32.5

9−39+32.5 ·
213

1+13+78+286 = 281; similarly A2(14, 6) ≤ .5·14·6
9−2·3·.5·14+.5·14·6 ·

214

Vq(14,3)
= 42

9−42+42 ·
214

1+14+91+364 = 162.
For w = 4, in the case of A2(13, 5), the first denominator is less than zero,

and thus we cannot apply the bound; A2(14, 6) still works, however. A2(14, 6) ≤
.5·14·6

16−2·4·.5·14+.5·14·6 ·
214

Vq(14,4)
= 42

16−56+42 ·
214

1+14+91+364+1001 = 233.

Thus the best upper bound from the Elias Bound for A2(13, 5) = A2(14, 6) =
162.

3 Asymptotic Bounds

We now wish to consider these Aq(n, d) values as n goes to infinity. To do so,
we must more formally define two terms.

In class, we have considered the rate of a linear code, k/n, as one measure
of the goodness of a code. That is, the rate tells us how much information
relative to redundancy that our codewords provide. The concept of rate can
be generalized to non-linear codes as well. For a possibly nonlinear code over
Fq with M codewords, the rate is defined to be n−1 logqM . Notice that for an

[n, k, d] linear code, M = qk and hence the rate is k/n as we expect.
A second notion of goodness that we have discussed, but I think not formally

defined, is the relative distance of a code. For a linear or nonlinear code of length
n has minimum distance d, this value is the ratio d/n.

For our asymptotic bounds, we are interested in the largest possible rate for
a family of codes over Fq of lengths going to infinity with a relative distance of
some constant δ. In other words, we consider the equation:

αq(δ) = lim sup
n→∞

n−1 logq Aq(n, δn) (10)

To better understand what is going on here, consider the case of an [n, k, d]
linear code C. Before, we wanted to know how large we could get k given n and
d. Now, we want to know how large we can get k

n given d
n = δ as n→∞. This

idea generalizes to non-linear codes as before.
For the rest of this section, we will consider two bounds on Aq(n, δn).

6

3.1 Asymptotic Singleton Bound

Recall the Singleton Bound from lecture:

Theorem 3.1. For d ≤ n, Aq(n, d) ≤ qn−d+1.

The asymptotic bound follows almost directly from the non-asymptotic vari-
ation.

Theorem 3.2. If 0 ≤ δ ≤ 1, then αq(δ) ≤ 1− δ.

Proof.

αq(δ) = lim sup
n→∞

n−1 logq Aq(n, δn)

≤ lim sup
n→∞

n−1 logq q
n−δn+1

≤ lim sup
n→∞

n− δn+ 1

n

≤ 1− δ

(11)

This is not exactly the most exciting bound in the world, but it is important
to know nonetheless.

3.2 Asymptotic Plotkin Bound

The Asymptotic Plotkin Bound gives a small improvement on the Asymptotic
Single Bound.

Theorem 3.3. Let r = 1− q. Then

αq(δ) =

{
0, r ≤ δ ≤ 1

1− δ/r, 0 ≤ δ < r.

Sketch of proof. First, consider the case of r ≤ δ ≤ 1. Notice that we can
apply the Plotkin bound directly, as rn < δn = d. By the Plotkin Bound,
Aq(n, δn) ≤ δn

δn−rn . Cancelling out the common n, we get Aq(n, δn) ≤ δ
δ−r .

Since this value is independent of n, it immediately follows from the definition
that αq(δ) = 0.

Next, consider the case of 0 ≤ δ < r. Suppose that C is an (n,M, δn)
code where M = Aq(n, δn) . Our goal is to puncture C such that we get a
shorter length code C′ with the same minimum distance as C. The idea is
to find a code whose n is small enough that we can still apply the Plotkin
bound, and then bound our original code C with the shortened code’s Plotkin
value. Use a shortening technique analgous to the one we described in lecture,
as well as Section 1.5.3 of the textbook, let C′ be the (n′,M ′, δn) code where
n′ = b(δn − 1)/rc and M ′ ≥ M/qn−n

′
. Given this code, we can show that

Aq(n, δn) ≤ qn−n
′
δn. Simplifying using the definition of αq(δ) completes the

proof.

7

Once again, we use MATLAB to visually compare two bounds. This time,
we consider the Asymptotic Singleton and Asymptotic Plotkin bounds.

Figure 4: Asymptotic Plotkin and Singleton bounds for q = 2

4 Lexicodes

We end our discussion on bounds with an interesting class of linear codes called
lexicodes, short for lexicographic codes. Lexicodes are linear and meet the
Gilbert bound; we will discuss the former and prove the latter. Note that for
this discussion we are solely working in F2.

We construct the lexicode L(n, d) with length n and minimum distance d
using a basic greedy algorithm as follows. First, order all n-tuples in an array
A in lexicographic order: A[0] = 0 · · · 000, A[1] = 0 · · · 001, A[2]0 · · · 010, A[3] =
0 · · · 011, . . . , A[2n − 1] = 1 · · · 111. Put the first vector from A (always the 0
vector when using the lexicographical ordering) in L. Next, find the first vector
x of weight d in the lexicographic ordering, and put it in L. Then, find the
next vector in the lexicographic ordering in A whose distance from each vector
in L is d or more and add it to L. Repeat this process until you have scanned
through all of A once.

The set L is a linear code of length n and minimum distance d. The set L
also contains linear subcodes which are generated by the above algorithm, but
stopping at the right spots.

Theorem 4.1. After constructing L as above, label the vectors c0, c1, . . . in
the order they were selected such that c0 is the 0 vector.

8

(i) L is a linear code and the vectors c2i are a basis of L.

(ii) After c2i is chosen, the next 2i − 1 vectors can be rewritten as c1 + c2i ,
c2 + c2i , . . ., c2i−1 + c2i .

(iii) Let Li = {c0, c1, . . . , c2i−1}. Then Li is an [n, i, d] linear code.

I claim that (i) and (iii) follow from (ii). Notice that for (ii), we are showing
that all codewords in the lexicode are simply linear combinations of the c2i
codewords, hence making the c2i codewords a basis for the code. This directly
implies (i) and (iii).

Sketch of proof of (ii). The proof is an induction on i. It works by assuming
that the second 2i vectors in Li+1 are not necessarily generated by adding ci2 to
each of the previously chosen vectors in Li. If you break this assumption, then
you can use the notion of lexicographic order to find two vectors lexicographi-
cally ordered in a way that is not actually possible.

The codes Li satisfy the inclusions L1 ⊂ L2 ⊂ · · · ⊂ Lk = L, where k is the
dimension of L. In general, this dimension value k is not known until you have
completed the construction as described above.

We now consider a basic example of a lexicode L(n, d) and it’s Lis.

Example 4.2. Consider the lexicode L(5, 2) and its Li subcodes. First, we
must construct the entire lexicode using our algorithm. To do so, we enumerate
all 32 vectors of F5

2 in lexicographic order: 00000,00001,00010,. . .,11111. We find
that L = {00000, 00011, 00101, 00110, 01001, 01010, 01100, 01111, 10001, 10010,
10100, 10111, 11000, 11011, 11101, 11110}. As a sanity check, note that |L| = 16,
a power of q. Consequently, we have L1 = {00000, 00011}, L2 = {00000, 00011, 00101,
00110}, L3 = {00000, 00011, 00101, 00110, 01001, 01010, 01100, 01111}, and L4 =
L. We can check to make sure that each cj is a linear combination of the c2is.
For this example, consider L3:

1. c0 is the trivial linear combination.

2. c1 = c1

3. c2 = c2

4. c3 = c1 + c2. 00110 = 00011 + 00101.

5. c4 = 1 · c4

6. c5 = c1 + c4. 01010 = 00011 + 01001.

7. c6 = c2 + c4. 011000 = 00101 + 01001.

8. c7 = c3 + c4 = c1 + c2 + c4. 01111 = 00011 + 00101 + 01001.

The same analysis applies for all Lis.

9

Note that the greedy algorithm we descibed in the beginning of the section
does not work correctly for all types of vector orderings. Again consider the
case of L(5, 2), but instead of the lexicographical ordering, shift every vector up
one such that the ordering is identical to before, except now the zero vector is at
the bottom of the list. If we run our algorithm on this ordering, we will choose
the vector 00001 first, and thus will not be able to choose the zero vector to be
a part of L(5, 2). In that case, L(5, 2) will not be linear.

Next, note that lexicodes meet one of the bound we discussed in lecture, the
Gilbert bound. Recall the Gilbert bound:

Bq(n, d) ≥ qn∑d−1
i=0

(
n
i

)
(q − 1)i

(12)

Claim 4.3. Lexicodes meet the Gilbert bound.

Proof. Consider an arbitrary lexicode L. Recall our construction of L with
vectors in Fnq , wherein we visit each vector in our ordering, and if it is distance
d or more to every current element in L then we add it to our set. At the same
time, notice that when a vector is visited in our algorithm, if it has distance
d− 1 or less to any vector in L, then it is not placed in L. Since all vectors in
Fnq are visited in our algorithm, any v ∈ Fnq must either be in L or must have
distance d − 1 or less to some vector in L. Hence the covering radius of L is
d− 1.

Consequently, it is enough to show that any code C with covering radius
d − 1 or less meets the Gilbert bound. Recall that the Gilbert bound can be
thought of as a restatement of the following fact: (number of spheres) · (number
of vectors in a sphere with radius d− 1) ≥ (number of vectors in Fnq). Since our
covering radius is d − 1 or less, and we have that all codewords are distance d
or more apart, consequently no sphere of radius d − 1 in Fnq can contain more
than one codeword. Our spheres will still overlap, however, meaning (number
of vectors in Fnq)/(number of vectors in a sphere with radius d−1) will certainly
be greater than or equal to the number of spheres around codewords. Hence, C
meets the Gilbert bound.

It may be surprising to discover that many codes we have already discussed
in lecture are in fact lexicodes. In order to have this discussion, though, we first
need two important definitions.

Definition 4.4. The nim− sum NS(v) of a vector v ∈ Fn2 is the sum of it’s
coordinates in GF(2).

Definition 4.5. A vector v ∈ Fn2 is zero− sum if NS(v)=0.

We have used the idea of nim-sums and zero-sums throughout the course,
but instead we have used the terms even-like or odd-like. In the binary case,
these are equivalent notions.

We also need the following Lemma:

10

Lemma 4.6. The codewords of the lexicode L(n, d) are also in the lexicode
L(n+ 1, d), except with an additional leading zero.

Proof. This follows directly from how our algorithm above was constructed.
Let Fnq

∗ be the vectors of Fnq with a zero appended in front of each vector’s first
coordinate. Notice that Fnq

∗ ⊂ Fn+1
q , and in our algorithm these will be the first

2n vectors that are visited. Since all that has changed is we’ve added a leading
0, the algorithm will choose these same vectors of L(n, d), except now with an
additional leading zero.

In lecture, we have frequently discussed the code of all even-weight code-
words. These are in fact the lexicodes L(n, 2).

Claim 4.7. For q = 2, L(n, 2) = {v | v ∈ Fn2 , NS(v) = 0}

Proof. We will prove this by inducting on n. In the base case of n = 1, L = {0},
which is trivially zero-sum.

Assume that, for the lexicode of length n, all codewords are zero-sum. Now,
we must show that all the codewords in L(n + 1, 2) are zero-sum as well. By
our lemma, all codewords in L(n, 2) are also in L(n+1, 2), except with an extra
leading zero. By our assumption, these codewords are still zero-sum, as adding
a zero in front will not change the nim-sum calculation.

Recall our Fnq
∗ construction from above. Now, we must show that for the

remaining vectors v ∈ Fn+1
q \ Fnq

∗that we have not yet visited, our algorithm
will choose all even-weight vectors and none of the odd-weight vectors.

First, consider the odd-weight vectors of Fn+1
q \ Fnq

∗. Note that these are
actually just the even weight vectors of Fnq with a 1 appended to the front. If you
flip the first bit of each vector, you get an even weight codeword that we have
already shown to be in L(n+1, 2). These vectors are all distance 1 from vectors
we’ve already added to L(n+ 1, 2), so they will be rejected by our algorithm.

Finally, consider the even-weight vectors of Fn+1
q \ Fnq

∗. Notice that these
are just the odd-weight vectors of Fnq with a 1 appended to the front. By our
assumption, none of the odd-weight vectors of Fnq

∗ are in L(n+1, 2). This means
that each even-weight vector in Fn+1

q \Fnq
∗ will necessarily have distance 2 from

vectors in L(n, 2) (with a zero appended to the front). We also have that any
two distinct even-weight vectors are at least distance 2 from one another, as
an even-weight vector can only possibly have distance one from an odd-weight
vector. This means that for two even-weight vectors x, y ∈ Fn+1

q \ Fnq
∗, adding

x to L will not directly preclude adding y. Hence, all even-weight vectors of
Fn+1
q \ Fnq

∗ will be chosen by our algorithm.

We have also frequently discussed the Hamming codes. In [3], they show that
the binary lexicodes with d=3 and n = 2m − 1 are the Hamming codes, and
similarly, as one might expect considering the previous statement, the binary
lexicodes with d = 4 and n = 2m are the extended Hamming codes. We can
check this with a simple example.

11

Example 4.8. Let n = 7, d = 3. It can be quite tedious to compute and confirm
something like this by hand, so I wrote a short C++ program that implements
the lexicode algorithm as described above. I made use of an algorithm for
counting ones in a binary number that is described by Wegner in [4]. We find
L(7, 3) to be {0, 7, 25, 30, 42, 45, 51, 52, 75, 76, 82, 85, 97, 102, 120, 127} where the
binary vectors are given by their decimal representation.

Note that L(7, 3) has 16 codewords, making it a [7, 4, 3] code. Recall that in
lecture we proved that all [7, 4, 3] codes are the Hamming(7,4) code.

References

[1] W. Cary Huffman and Vera Pless. Fundamentals of Error-Correcting Codes.
Cambridge: Cambridge University Press, 2003. Print.

[2] J. H. Conway and N. J. A. Sloane. “Lexicographic codes: Error-correcting
codes from game theory,” IEEE Trans. Inform. Theory IT-32 (1986), 337-
348.

[3] Richard Brualdi and Vera Pless. “Greedy Codes,” Journal of Combinatorial
Theory 64 (1993), 10-30.

[4] Peter Wegner. “A Technique for Counting Ones in a Binary Computer,”
Commun. ACM 3 (1960), 322.

12

