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Abstract

This paper considers the spectra of self-adjoint Toeplitz operators for
various symbols, specifically in regards to the Weyl and Berezin-Toeplitz
quantizations. The main result is a proof of the Szegö Limit Theorem for
a very specific type of Berezin-Toeplitz operator, from which we make a
conjecture for more general symbols.
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1 Introduction

The spectra of self-adjoint Toeplitz operators has long been an object of study
[1]. For fairly general symbols, these spectra are well understood. In fact,
in [2], Ulf Grenander and Gábor Szegö proved the Szegö Limit Theorem, which
describes the asymptotic distribution of eigenvalues specifically in terms of such
symbols. For symbols that are generalized functions, however, the spectra of
self-adjoint Toeplitz operators is not well understood. In this paper we begin by
restating the findings of Grenander and Szegö, and then we extend their work
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to symbols that are distributions; specifically, the Dirac delta function. We then
make a conjecture that further generalizes our work. Note: MATLAB is used
throughout the course of the paper to highlight various examples.

2 Weyl Quantization

Suppose f(x, p) : [−π, π] × [0, 1] → R is a real-valued function defined on the
cylinder s.t. f(x+ 2π) = f(x). We can then define the Fourier series

f(x, p) =

∞∑
k=−∞

fk(p)eikx. (1)

On p.93 of [2], Grenander and Szegö introduce a variation of the Toeplitz
matrix, Tf,N , derived from f(x, p) as in (1) where

ti,j = fj−i(
1

2

i+ j

N + 1
), 1 ≤ i, j ≤ N + 1. (2)

They also impose the following condition on f :

Condition 1. The coefficients fk(p) are continuous and there exists a constant
M such that

∞∑
n=−∞

max|fk(p)| ≤M. (3)

Notice that the matrix Tf,N is Hermitian if and only if f is real valued, which
we can prove quite easily:

Theorem 2.1. f is real valued ⇔ ∀p ∀k fk(p) = f−k(p).

Proof. For the forward direction, consider the formal definition of the Fourier
coefficient:

fk(p) =
1

2L

∫ L

−L
f(x)eikx dx

=
1

2L

∫ L

−L
f(x)e−ikx dx

=
1

2L

∫ L

−L
f(x)e−ikx dx

= f−k(p).

(4)

For the backwards direction:

fk(p) = f−k(p)

=
1

2L

∫ L

−L
f(x)e−ikx dx

=
1

2L

∫ L

−L
f(x)eikx dx.

(5)
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Also we have the relationship that

fk(p) =
1

2L

∫ L

−L
f(x)eikx dx. (6)

f(x) = f(x) ⇒ f is real-valued.

Because these matrices are Hermitian (i.e. they fit the conditions of Theorem
2.1), their spectra are composed entirely of real values. This property allows
us to, among other things, graph and analyze the distribution of eigenvalues in
a way that is easy to visualize. The asymptotic distribution of eigenvalues (as
N →∞) is given by one of the main results of [2].

Theorem 2.2. (Szegö Limit Theorem) Let f(x, p) be a function that satisfies
Condition 1. Then ∀k ≥ 1, k ∈ Z:

lim
N→∞

1

N + 1
Tr
(
(Tf,N )k

)
=

1

2π

∫ π

−π

∫ 1

0

f(x, p)k dp dx. (7)

Let {λ(N)
j | 0 ≤ j ≤ N} be the eigenvalues of Tf,N . Because Tf,N is Hermi-

tian, it is not difficult to rewrite (7) as

lim
N→∞

1

N + 1

N∑
j=0

(
λ

(N)
j

)k
=

1

2π

∫ π

−π

∫ 1

0

f(x, p)k dp dx. (8)

Further, it can be shown that this altered form of the Szegö Limit Theorem is
just one instance of a more powerful equality:

Corollary 2.1. If ϕ : R→ R cont., then

lim
N→∞

1

N + 1

N∑
j=0

ϕ
(
λ

(N)
j

)
=

1

2π

∫ π

−π

∫ 1

0

ϕ(f(x, p)) dp dx. (9)

We now introduce a function β which, by virtue of (9), will describe the

distribution of eigenvalues of Tf,N in terms of its symbol, f(x, p). If the λ
(N)
j

are evenly distributed on some fixed interval, I, then one can say that

lim
N→∞

1

N + 1

N∑
j=0

ϕ
(
λ

(N)
j

)
=

∫
I
ϕ(t) dt. (10)

Yet, as it becomes apparent in upcoming examples, this is not the case; conse-
quently, we compensate with some correction function, β, such that

lim
N→∞

1

N + 1

N∑
j=0

ϕ
(
λ

(N)
j

)
=

∫
I
ϕ(t)β(t) dt. (11)
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Combining (9) and (11),∫ π

−π

∫ 1

0

ϕ (f(x, p)) dp dx =

∫
I
ϕ(t)β(t) dt. (12)

Solving for β(t) using the equality in (12) requires some ingenuity. First,
consider the coarea formula:

Theorem 2.3. Suppose that Ω is an open set in Rn, and f is a real-valued
Lipshitz function on Ω. Then, for an L1 function Ψ,∫∫

Ω

Ψ(x)|∇f(x)| dx =

∫
Im(f)

(∫
f−1(x)

Ψ ds

)
dx. (13)

For our purposes, let

Ψ =
ϕ(f(x, p))

|∇f(x, p)|
, Ω = [−π, π]× [0, 1] (14)

assuming that ∇f(x, p) does not vanish. Consequently,∫ π

−π

∫ 1

0

ϕ(f(x, p)) dp dx =

∫∫
Ω

Ψ|∇f(x, p)| dp dx

=

∫
Im(f)

(∫
f−1(t)

ϕ(f(x, p))

|∇f(x, p)|
ds

)
dt (by the coarea fomula)

=

∫
Im(f)

(∫
f−1(t)

ϕ(t)

|∇f(x, p)|
ds

)
dt

=

∫
Im(f)

ϕ(t)

(∫
f−1(t)

1

|∇f(x, p)|
ds

)
dt.

(15)

Therefore

β(t) =

∫
f−1(t)

1

|∇f(x, p)|
ds. (16)

We know of no reasonable method to analytically compute such an integral.
Consequently, we focus on approximating β(t) instead. We choose the method
of orthogonal polynomials, using the normalized Legendre polynomials, Pn, on
the interval [−1, 1] where

Pn =
pn
||pn||

, pn =
1

2n

n∑
k=0

(
n

k

)2

(x− 1)n−k(x+ 1)k. (17)

Note that because these polynomials are only orthogonal on the interval
[−1, 1], it is necessary to normalize all functions we consider for this approxi-
mation to this interval as well.
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Let

β(x) =

∞∑
n=0

anPn(x), an =

∫ 1

−1

β(x)Pn(x) dx. (18)

Since the pn form a basis [3], the coefficients an are guaranteed to exist. Using
the equality from (12), we can rewrite an as

an =

∫ π

−π

∫ 1

0

Pn(f(x, p)) dp dx. (19)

Therefore we can say β ≈ β̃, where

β̃(x) =

M∑
n=0

(∫ π

−π

∫ 1

0

Pn(f(x, p)) dp dx

)
Pn(x). (20)

Example 2.1. Let f(x, p) = cos(x)+p sin(x)√
2

.

The spectrum of Tf,N as N varies from 1 to ∞ gives us the following graph:
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Figure 1: Eigenvalues of Tf,N for increasing N

Solving for the distribution function as described above gives us:
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Figure 2: Approximation of the distribution function

Notice that the two peaks of the function in Figure 2 line up exactly with
the two areas of highest eigenvalue concentration in Figure 1.

Example 2.2. Let f(x, p) = xp. As in Example 2.1, we get two graphs:
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Figure 3: Eigenvalues of Tf,N for increasing N
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Figure 4: Approximation of the distribution function

As in the previous example, the two graphs agree in regards to the spectral
distribution of f .

3 Berezin-Toeplitz Quantization

While intriguiging, the Weyl quantization method applies solely to symbols that
are functions. Consequently, we are motivated to consider a different quanti-
zation, the Berezin-Toeplitz, which will allow us to explore symbols that are
distributions. Asymptotically, these two quantizations are equivalent when the
symbols are smooth (Thm 13.10 in [4]). To define this quantization, we begin
working in the context of the Bargmann Space. From now on, the inverse of
Planck’s constant, 1

~ , will play the role of N .
Consider the domain (x, p) ∈ [0, 2π]×R, and impose a complex variable z s.t.

z = x − ip ∈ C. We can then form a geometric quantization to the Bargmann
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Space of the cylinder.

Definition 3.1. The Bargmann Space, B, of the cylinder is defined as all Ψ(z)
such that

I. Ψ is analytic

II. Ψ is periodic in z, i.e. Ψ(z + 2π) = Ψ(z)

III. ||Ψ||2 =
∫ 2π

0

∫∞
−∞|Ψ(z)|2e−Np2 dp dx <∞, N = 1

~ .

The normalization in III. is a consequence of the following Hermitian inner
product:

Definition 3.2. ∀ Ψ1,Ψ2 ∈ B,

〈Ψ1,Ψ2〉 =

∫ 2π

0

∫ ∞
−∞

Ψ1(z)Ψ2(z)e−Np
2

dp dx. (21)

Next, to define the Berezin-Toeplitz operator, it is necessary to find an or-
thonormal basis of B.

Proposition 3.1. ∀n ∈ Z, einz ∈ B.

Proof. This generalized vector fulfills the three conditions we just set out for B
above. Items I. and II. are obvious. For III., using the inner product defined
above:

||einz||2 =

∫ 2π

0

∫ ∞
−∞
|einz|2e−Np

2

dp dx

=

∫ 2π

0

∫ ∞
−∞
|ein(x−ip)|2e−Np

2

dp dx

=

∫ 2π

0

∫ ∞
−∞

e2np−Np2 dp dx

= 2πe
n2

N

∫ ∞
−∞

e−N(p− n
N )2 dp.

(22)

Let u =
√
N(p− n

N ).

2πe
n2

N

∫ ∞
−∞

e−N(p− n
N )2 dp = 2πe

n2

N

∫ ∞
−∞

e−u
2

√
N

du

= 2πe
n2

N

√
π√
N

=
2π3/2

√
N

e
n2

2N <∞.

(23)
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Since we are looking for an orthonormal basis, we divide by the length of
einz, which is the square-root of the value just found above.

Definition 3.3. ∀n ∈ Z,

en(z) :=
einz√
T
, T =

2π3/2

√
N

e
n2

2N . (24)

From this definition, and the way in which we defined the inner product, it
follows that 〈einz, eimz〉 = δnm. Consequently we claim that {en|n ∈ Z} is an
orthonormal basis of B. We will not prove that this system is complete, but it
is.

Take f : [0, 2π]×R→ R, and we are now able to define the Berezin-Toeplitz
operator of f .

Definition 3.4. Op(f) : B 7→ B is the composition

B 3 Ψ 7→ fΨ 7→ Π(fΨ) ∈ B (25)

where Π is the orthogonal projection

Π : L2([0, 2π]× R, e−Np
2

dp dx) 7→ B. (26)

In other words, the operator takes an element of B and multiplies it with f ,
but because fΨ /∈ B (consider f(x, p) = cos(x)+p sin(x)), we must then project
back onto the Bargmann space, hence the orthogonal projection.

We now have a well-defined Berezin-Toeplitz operator. The next step is to
find the matrix, Uf,N , of Op(f) with respect to {en, n ∈ Z}:

um,n = 〈Op(f)(en), em〉
= 〈fen, em〉 (because Π is self-adjoint)

=

√
N

2π
3
2

e−
n2+m2

2N

∫ 2π

0

∫ ∞
−∞

f(x, p)ein(x−ip)eim(x−ip)e−Np
2

dp dx

=

√
N

2π
3
2

e−
n2+m2

2N

∫ 2π

0

∫ ∞
−∞

f(x, p)ei(n−m)xe(n+m)p−Np2 dp dx.

(27)

As an example, we compute the case of Op(f) where f = p.

Example 3.1.

Op(p) =

√
N

2π
3
2

e−
n2+m2

2N

∫ 2π

0

∫ ∞
−∞

pei(n−m)xe(n+m)p−Np2 dp dx

= δm,n

√
N

π
e
−n2

N

∫ ∞
−∞

pe2np−Np2 dp

= δm,n

√
N

π
e
−n2

N

∫ ∞
−∞

peN(p− n
N )2−n2

N dp.

(28)
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Let q = p− n
N .

Op(p) = δm,n

√
N

π
e
−n2

N

∫ ∞
−∞

(q +
n

N
)e−Nq

2+n2

N dq

= δm,n

√
N

π

∫ ∞
−∞

(q +
n

N
)e−Nq

2

dq

= δm,n

√
N

π

(∫ ∞
−∞

qe−Nq
2

dq +
n

N

∫ ∞
−∞

e−Nq
2

dq

)
= δm,n

√
N

π

n

N

√
π

N

= δm,n
n

N
.

(29)

This proves the following lemma:

Lemma 3.2. The spectrum of Op(f) where f = p consists of the eigenvalues
n
N , n ∈ Z. And the en are the associated eigenfunctions.

We will now truncate Op(f) as follows: Let H be the span of eigenfunctions
of Op(p) with eigenvalues in [0, 1]. Consider that

0 ≤ n ≤ N ⇐⇒ 0 ≤ n

N
≤ 1. (30)

Therefore H = span{en, n = 0, 1, . . . , N}. By the quantum-classical correspon-
dence, H corresponds to the part of the cylinder defined by 0 ≤ p ≤ 1. Out of
the infinite matrix (um,n)m,n∈Z of Op(f), we extract the block corresponding to
H, namely (um,n)0≤m,n≤N . In fact, for ease of computation, we replace it with
the matrix V = (vm,n)0≤m,n≤N where

vm,n =

√
N

2π
3
2

e−
n2+m2

2N

∫ 2π

0

∫ 1

0

f(x, p)ei(n−m)xe(n+m)p−Np2 dp dx. (31)

That is, where the integration is over the part of the cylinder corresponding to
H. This is justified by the following lemma:

Lemma 3.3. If 1 ≤ m,n ≤ N − 1, then |um,n− vm,n| is exponentially small as
N →∞.

Proof. It is enough to show that

e−
n2+m2

2N

(∫ ∞
1

e(n+m)p−Np2 dp+

∫ 0

−∞
e(n+m)p−Np2 dp

)
(32)

is exponentially small as N →∞.

Case 1. First, consider the integral on the left:

e−
n2+m2

2N

∫ ∞
1

e(n+m)p−Np2 dp = e−
n2+m2

2N

∫ ∞
1

eN(p−n+m
2N )2− (n+m)2

4N2 (33)
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Let s =
√
N
(
p− n+m

2N

)
.

e−
n2+m2

2N

∫ ∞
1

eN(p−n+m
2N )2− (n+m)2

4N2 =
e−

(n−m)2

4N

√
N

∫ ∞
√
N−n+m

2
√
N

e−s
2

ds

=
e−

(n−m)2

4N

√
N

erfc(
√
N − n+m

2
√
N

)

(34)

where erfc(x) is the complemtary error function, which is exponentially small
as N →∞.

Case 2. For the second integral of (32), a similar result is obtained with the
simplification process from Case 1. We end up with the following expression:

e−
(n−m)2

4N

√
N

∫ −n+m

2
√
N

−∞
e−s

2

ds. (35)

Since e−s
2

is an even function, this expression also reduces to some constant
multiplied by erfc(x).

Since the cases where n = N = m and n = 0 = m are such a small percentage
of all the possible combinations of 0 ≤ n,m ≤ N for large N, it is reasonable
to neglect the small error that they cause when changing the bounds of p as in
(31). For simplicity, let

vm,n = ANm,n

∫ 2π

0

∫ 1

0

f(x, p)ei(n−m)xe(n+m)p−Np2 dp dx (36)

where

ANm,n =

√
N

2π
3
2

e−
n2+m2

2N . (37)

At last, (36) is our Berezin-Toeplitz quantization on the cut cylinder 0 ≤
p ≤ 1. It is interesting to compare the Weyl and Berezin-Toeplitz quantizations
together for the same function, as asymptotically they should be the same. For
comparision, it is necessary to normalize the Berezin-Toeplitz operator by 1√

N
;

otherwise, the eigenvalues of V will tend to infinity.

Example 3.2. Let f(x, p) = p cos(x).
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Figure 5: Weyl quantization
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Figure 6: Berezin-Toeplitz quantization

Equation (36) immediately extends to the case where f is a generalized
function.
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4 Examples of B-T Operators with Singular Sym-
bols

We now consider two examples in which the symbol is a distribution. These
examples will motivate our main result.

Example 4.1. Let f(x, p) = δ(x0, p0), the standard Dirac delta function. Sub-
stituting into the Berezin-Toeplitz quantization,

vm,n = ANm,n

∫ 2π

0

∫ 1

0

δ(x0, p0)ei(n−m)xe(n+m)p−Np2 dp dx

= ANm,ne
i(n−m)x0e(n+m)p0−Np20 .

(38)

For x0 = 1, p0 = 1/3:
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Figure 7: Spectrum of the Dirac delta function
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The Dirac delta function appears to be a linear projector multiplied by a
linearly increasing constant in the context of this quantization.

While the above example is interesting, there is very little to describe about
the symbol’s distibution of eigenvalues. Consequently, we are motivated to
consider a more complicated symbol–the Dirac delta function associated with a
function, δγ(x, p)–which we define as follows:

Definition 4.1. ∀ ϕ : [0, 2π]× [0, 1]→ R,∫ 2π

0

∫ 1

0

δγ(x, p)ϕ(x, p) dp dx =

∫
γ

ϕds. (39)

Applying the Berezin-Toeplitz quantization,

vm,n = ANm,n

∫ 2π

0

∫ 1

0

δγ(x, p)ei(n−m)xe(n+m)p−Np2 dp dx

= ANm,n

∫
γ

ei(n−m)xe(n+m)p−Np2 ds.

(40)

Example 4.2. Consider the ellipse( x
2π

)2

+ p2 = 1, 0 ≤ x ≤ π

2
, 0 ≤ p ≤ 1. (41)

We apply the parametrization

x = 2π cos(t), p = sin(t), ds =

√
dx

dt

2

+
dp

dt

2

dt, 0 ≤ t ≤ π

2
, (42)

to get the following result:

vm,n = ANm,n

∫ π
2

0

ei(n−m)2π cos(t)e(n+m) sin(t)−N sin2(t)
√

(−2π sin(t))2 + cos2(t) dt.

Using MATLAB to graph the eigenvalues of these matrices for varying N, it
is necessary to use numerical integration, specifically adapative Simpson quadra-
ture in this instance, to get compile times under 8 hours. When computing the
matrix for some values of N, a singularity occurs in the quadrature process caus-
ing a skewed approximation to occur. The overall trend of the graph, however,
is still an accurate approximation:
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Figure 8: Spectrum of the Dirac delta function assoc. ellipse
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5 Main Results

In this section we consider a case where the symbol is a Dirac delta function
associated with a curve. In this case the spectrum can be computed exactly, and
we obtain a Szegö Limit Theorem. We then make a conjecture that generalizes
this theorem.

Let f(x, p) = δγ(x, p), where γ is the parametrized curve{
x = t , 0 ≤ t ≤ 2π

p = p , 0 ≤ p ≤ 1
(43)

Applying the Berezin-Toeplitz quantization, we find the matrix elements

um,n = ANm,n

∫ 2π

0

∫ 1

0

δγ(x, p)ei(n−m)xe(n+m)p−Np2 dp dx

= ANm,ne
(n+m)p−Np2

∫ 2π

0

ei(n−m)t dt

= 2πANm,nδmne
(n+m)p−Np2 ,

(44)

where δmn is the Kroenecker delta. This simplifies to

um,n = δmn

√
N

π
e
−(
√
Np− n√

N
)2
. (45)

Since the diagonal entries of a diagonal matrix are its eigenvalues, after normal-
izing:

λ
(N)
k = e

−(
√
Np− k√

N
)2
. (46)

In Section 2, we stated the Szegö Limit Theorem. We now state and prove
a similar two-term Szegö limit expansion for the class of delta functions defined
by (43).

Theorem 5.1. ∀W ∈ C2, as N →∞

1

N

N∑
k=1

W(λ
(N)
k ) =W(0) +

1

2
√
N

∫ 1

0

W(s)−W(0)

s
√
− log(s)

ds+O
(
Ne−Np

2
)
. (47)

Proof. We begin with

1

N

N∑
k=1

W(λ
(N)
k ) (48)

and then replace λ
(N)
k with the expression from (46):
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1

N

N∑
k=1

W(e
−(
√
Np− k√

N
)2

). (49)

We then split 1
N into two equal factors:

1√
N

N∑
k=1

W(e
−(
√
Np− k√

N
)2

)
1√
N
. (50)

This is allows us to consider (48) as a Riemann sum with step 1√
N

of the

following integral:

1√
N

∫ √N
0

W(e−(
√
Np−u)2) du. (51)

We will use the following well-known lemma to calculate an exact error bound
on this Riemann approximation.

Lemma 5.2. Let f(x) be a bounded function on a bounded interval [a, b], parti-
tioned into p subintervals [xk−1, xk], k = 1, . . . , p. In each subinterval [xk−1, xk]
choose x∗k, xk−1 ≤ x∗k ≤ xk. Then∣∣∣∣∣

p∑
k=1

(xk − xk−1)f(x∗k)−
∫ b

a

f(x) dx

∣∣∣∣∣ ≤ b− a
2

max
[a,b]
|f ′(x)|δmax (52)

where δmax = maxk(xk − xk−1).

For our case:

b− a =
√
N, δmax =

1√
N
, f =W(e−(

√
Np−u)2) (53)

and

max
[a,b]
|f ′(x)| = f ′(0) = 2Np3e−Np

2

W ′(e−Np
2

) (54)

where

f ′(x) =W ′(e−(
√
Np− x√

N
)2

)
2√
N

(
√
Np− x√

N
)3e
−(
√
Np− x√

N
)2

(55)

Consequently,

∣∣∣∣∣ 1

N

N∑
k=1

W(λ
(N)
k )− 1√

N

∫ √N
0

W(e−(
√
Np−u)2) du

∣∣∣∣∣ ≤ 2Np3e−Np
2

W ′(e−Np
2

).

(56)
At this point we have the relationship
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1

N

N∑
k=1

W(λ
(N)
k ) =

1√
N

∫ √N
0

W(e−(
√
Np−u)2) du+O

(
Ne−Np

2
)

(57)

We now analyze asymptotically the integral in (57). For simplicity, apply the

change of variable t = u−
√
Np√
N

:∫ 1−p

−p
W(e−Nt

2

) dt. (58)

Lemma 5.3.∫ 1−p

−p
W(e−Nt

2

) dt =W(0) +
1√
N

∫ 1

0

W(s)−W(0)

s
√
− log(s)

ds+O(e−Np
2

). (59)

Proof. Split up the left hand side of (59) as∫ p

0

W(e−Nt
2

) dt+

∫ 1−p

0

W(e−Nt
2

) dt. (60)

Note that the bounds on the first integral are correct because W(e−Nt
2

) is

guaranteed to be an even function. Now apply the change of variable s = e−Nt
2

to obtain

1

2
√
N

[∫ 1

e−Np2

W(s)

s
√
− log s

ds+

∫ 1

e−N(1−p)2

W(s)

s
√
− log s

ds

]
. (61)

Let

IN =
1

2
√
N

∫ 1

e−Np2

W(s)

s
√
− log(s)

ds, JN =
1

2
√
N

∫ 1

e−N(1−p)2

W(s)

s
√
− log(s)

ds

(62)
and

W(s)

s
=
W(0)

s
+ Z(s), where Z(s) =

W(s)−W(0)

s
. (63)

The following analysis is performed for IN only, but is identical to that of JN .
Substituting into IN we get

IN =W(0)

(
1

2
√
N

∫ 1

e−Np2

1

s
√
− log(s)

ds

)
+

1

2
√
N

∫ 1

e−Np2

Z(s)√
− log(s)

ds. (64)

Consider the first integral expression in equation (64). By reversing our most
recent change of variables, it reduces to just p, and our equation simplifies to
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IN =W(0)p +
1

2
√
N

∫ 1

e−Np2

Z(s)√
− log(s)

ds. (65)

Now consider the second integral in (64). We need to show that this integral
can be rewritten as ∫ 1

0

Z(s)√
− log(s)

ds. (66)

Or, in other words,

∫ 1

e−Np2

Z(s)√
− log(s)

ds−
∫ 1

0

Z(s)√
− log(s)

ds =

∫ e−Np
2

0

Z(s)√
− log(s)

ds (67)

and that this difference is exponentially small. Note that the integrand is a
continuous function on the domain of integration, for N > 0. Therefore we can
apply the Mean Value Theorem for integrals: ∀N ∃sN ∈ [0, e−Np

2

] such that

∫ e−Np
2

0

Z(s)√
− log(s)

ds = e−Np
2 Z(sN )√
− log(sN )

. (68)

If we take, for example

C = sup
s∈[0, 12 ]

∣∣∣∣∣ Z(s)√
− log(s)

∣∣∣∣∣ (69)

then we have that for all sufficiently large N∣∣∣∣∣ lim
N→∞

∫ 1

e−Np2

Z(s)√
− log(s)

ds−
∫ 1

0

Z(s)√
− log(s)

ds

∣∣∣∣∣ ≤ Ce−Np2 . (70)

Our final result is that

IN =W(0)p+
1

2
√
N

∫ 1

0

W(s)−W(0)

s
√
− log(s)

ds+O(e−Np
2

). (71)

Similarly,

JN =W(0)(1− p) +
1

2
√
N

∫ 1

0

W(s)−W(0)

s
√
− log(s)

ds+O(e−Np
2

). (72)

Summing the two together we obtain

IN + JN =W(0) +
1√
N

∫ 1

0

W(s)−W(0)

s
√
− log(s)

ds+O(e−Np
2

). (73)

This proves the lemma.
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We can now use the triangle inequality to finish the proof of the theorem.
Let

P =
1

N

N∑
k=1

W(λ
(N)
k ) Q =W(0)+

1

2
√
N

∫ 1

0

W(s)−W(0)

s
√
− log(s)

ds R =

∫ 1−p

−p
W(e−Nt

2

) dt

(74)
By the triangle inequality,

|P − Q| ≤ |P −R|+ |R −Q| (75)

By (56) and Lemma 5.3,

|P − R| ≤ O
(
Ne−Np

2
)

+O(e−Np
2

)

≤ O
(
Ne−Np

2
)
.

(76)

This proves the theorem.

Our theorem implies that the spectrum for any delta function as defined by
equation (43) will have the following distribution function away from s = 0:

β(s) =
1

s
√
− log(s)

(77)

We can visualize this with an example.

Example 5.1. Let f(x, p) be the Dirac delta function associated with x =
t, p = 1

2 .

24



0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Delta Function assoc. x=t, p = 0.5

N

E
ig

en
va

lu
e

Figure 9: Spectrum for increasing N
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Figure 10: β(s) = 1

s
√
− log(s)

After proving this theorem and studying various related examples, we are
motivated to make the following conjecture:

Conjecture 5.1. For all Dirac delta functions associated with a curve and
a density on it, there exists a two-term Szegö limit expansion, with a leading
termW(0) and a second term of order O( 1√

N
) which behaves as in the following

examples.

Example 5.2. Let f(x, p) be the delta function associated with x = 2πt, p = t.
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Figure 11: Spectrum for increasing N

Example 5.3. Let f(x, p) be the delta function associated with x = 2πt2, p = t.

27



0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Delta Function assoc. x=2pi*t2, p=t

N

E
ig

en
va

lu
e

 

 

Figure 12: Spectrum for increasing N
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6 Selected MATLAB Code

Figure 1

%i n i t i a l i z e and c r e a t e v a r i a b l e s
E = [ ] ;

f o r n = 0:100

%i n i t i a l i z e t o e p l i t z matrix
toep = ze ro s (n+1);

%based on condi t ion , put c o r r e c t va lue
f o r i = 1 : ( n+1)

f o r j = 1 : ( n+1)
i f i−j == 1

toep ( i , j ) = f1 ( . 5 ∗ ( i+j )/ ( n+1))∗(1/ s q r t ( 2 ) ) ;
end
i f i − j == −1

toep ( i , j ) = fneg1 ( . 5 ∗ ( i+j )/ ( n+1))∗(1/ s q r t ( 2 ) ) ;
end

end
end

%obta in a column vecto r o f e i g e n v a l u e s o f t o e p l i t z matrix
EIG = e i g ( toep ) ;

%obta in l ength o f e i g enva lue vec to r
l en = length (EIG ( : , 1 ) ) ;

%c r e a t e a temporary matrix concatenat ing a vec to r o f appropr ia te l ength
%of z e r o e s to the e i g enva lue vec to r
temp = [ z e ro s ( len , 1) EIG ] ;

%put appropr ia te value in to the l e f t hand column
f o r k = 1 : l en

temp ( k ) = n ;
end

%f i n a l l y , concatenate temp to our E matrix which i s what we w i l l
%u l t i m a t e l y be p l o t t i n g
E = [E; temp ] ;

end

%s c a t t e r p l o t o f E
f i g u r e ;
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s c a t t e r (E( : , 1 ) , E( : , 2 ) , ’+ ’)
t i t l e ( ’ f (x , p ) = ( cos ( x ) + p∗ s i n ( x ) )/ s q r t ( 2 ) ’ )
x l a b e l ( ’N’ )
y l a b e l ( ’ Eigenvalue ’ )

Note: this code calls the two functions below

f unc t i on [ y ] = f1 ( x )
y = . 5 + x/(2∗1 i ) ;

f unc t i on [ y ] = fneg1 ( x )
y = . 5 − x/(2∗1 i ) ;

Figure 2

%i n i t i a l i z e and c r e a t e v a r i a b l e s
syms x p ;
apprx = 0 ;
N = 15 ;

f o r n = 0 :N

%polynomial b a s i s vector , [ xˆn , nˆn−1, . . . , x ˆ0 ]
E = [ ] ;
f o r m = 1 : ( n+1)

temp = x ˆ( ( n+1)−m) ;
E = [E; temp ] ;

end

%Jacobi polynomial o f l ength f o r n−1
P n = or th po ly ( ’ Jacobi ’ , n , 0 , 0 ) ∗ E;

%normal ize the Jacobi polynomial
P norm = s q r t ( i n t ( ( P n )ˆ2 , x , −1 ,1 ) ) ;
P n = P n/P norm ;

p n = P n ;

%Find p n ( f (x , p ) )
G = subs ( P n , ( cos ( x ) + (p)∗ s i n ( x ) ) / ( s q r t ( 2 ) ) , x ) ;

%Find a n by double i n t e g r a t i n g p n ( f (x , p ) )
a n = i n t ( i n t (G, x , 0 , 2∗ pi ) , p , 0 , 1 ) ;

%i t e r a t e in to our j a c o b i polynomial approximation
apprx = apprx + a n∗p n ;

30



end

%Plot the Jacobi polyn approximation
f i g u r e ;
e z p l o t ( apprx , −1 ,1)
t i t l e ( [ ’ ( cos ( x ) + p∗ s i n ( x ) )/ s q r t ( 2 ) , n = ’ , num2str (N) ] )

Figure 8

%i n i t i a l i z e and c r e a t e v a r i a b l e s
E = [ ] ;
syms x t

h = waitbar (0 , ’ P lease wait . . . ’ ) ;
N = 70 ;
f o r n = 1 :N

%i n i t i a l i z e t o e p l i t z matrix to z e ro s
toep = ze ro s (n ) ;
norm = s q r t (n/ p i ) ;
un norm = 1 ;

%based on condi t ion , put c o r r e c t va lue
f o r i = 1 : n

f o r j = 1 : n
A i jn = ( s q r t (n )/ (2∗ ( p i ) ˆ ( 3 / 2 ) ) )∗ exp(−1∗( i ˆ2 + j ˆ2)/(2∗n ) ) ;

%exp ( (1 i ∗( j−i )∗2∗ pi ∗ cos ( t ) ) + ( ( i+j )∗ s i n ( t ) ) − (n ∗ ( ( s i n ( t ) ) ˆ 2 ) ) ) ∗ s q r t ( (4∗ pi ˆ2 )∗ ( ( s i n ( t ) ) ˆ 2 ) + ( cos ( t ) ) ˆ 2 ) ;
f = m a k e f u n e l l i p s e ( i , j , n ) ;
q = matlabFunction ( f ( t ) ) ;

toep ( i , j ) = A i jn ∗quadgk (q , 0 , p i /2)/norm ;
end

end
% end
% toep

%obta in a column vecto r o f e i g e n v a l u e s o f t o e p l i t z matrix
EIG = e i g ( toep ) ;

%obta in l ength o f e i g enva lue vec to r
l en = length (EIG ( : , 1 ) ) ;

%c r e a t e a temporary matrix concatenat ing a vec to r o f appropr ia te l ength
%of z e r o e s to the e i g enva lue vec to r
temp = [ z e ro s ( len , 1) EIG ] ;
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%put appropr ia te value in to the l e f t hand column
f o r k = 1 : l en

temp ( k ) = n ;
end

%f i n a l l y , concatenate temp to our E matrix which i s what we w i l l
%u l t i m a t e l y be p l o t t i n g
E = [E; temp ] ;

waitbar (n/N)
end
c l o s e (h)

%s c a t t e r p l o t o f E
f i g u r e ;
s c a t t e r (E( : , 1 ) , E( : , 2 ) , ’+ ’)
t i t l e ( ’ Delta Function as soc . ( x/2 p i )ˆ2 + pˆ2 = 1 ’ )
x l a b e l ( ’N’ )
y l a b e l ( ’ Eigenvalue ’ )

Note: this code calls the following function

f unc t i on fcn = m a k e f u n e l l i p s e ( i , j , n )

f cn = @parabola ;

f unc t i on y = parabola ( t )
y = exp ( (1 i ∗( j−i )∗2∗ pi ∗ cos ( t ) ) + ( ( i+j )∗ s i n ( t ) ) − (n ∗ ( ( s i n ( t ) ) ˆ 2 ) ) ) ∗ s q r t ( (4∗ pi ˆ2 )∗ ( ( s i n ( t ) ) ˆ 2 ) + ( cos ( t ) ) ˆ 2 ) ;

end
end
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